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Phase coupling between auto-oscillators is central for achieving coherent responses such as synchroniza-
tion. Here we present an experimental approach to probe it in the case of two dipolarly coupled spin-torque
vortex nano-oscillators using an external microwave field. By phase locking one oscillator to the external
source, we observe frequency pulling on the second oscillator. From coupled phase equations we show
analytically that this frequency pulling results from concerted actions of oscillator-oscillator and source-
oscillator couplings. The analysis allows us to determine the strength and phase shift of coupling between two
oscillators, yielding important information for the implementation of large interacting oscillator networks.
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Self-sustained oscillators that are linked byphase coupling
exhibit abundant collective dynamics [1] and describe
diverse systems in nature [2–10]. In particular, they can
synchronize, which is important in the fields of engineering,
biology, and computing. Indeed, synchronized oscillators
exhibit improved amplitudes and spectral purity of their
outputs, and can be used to study andmimic neural networks
[11,12]. Theoretical explorations of this phenomenon have
beengoing on for decades, in particularwithin the framework
of the Kuramoto model [13,14], where phase coupling is
simplified as a sinusoidal function of phase difference,

dφi

dt
¼ ωi þ

X
j

Ωji sinðφj − φi þ βiÞ; ð1Þ

whereφi is the phase of the ith oscillator,ωi is its free-running
frequency,Ωji is the coupling strength between the jth and ith
oscillators, and βi is an intrinsic phase shift related to the
nature of the coupling and to the nonlinearity of the oscillator
[15]. In experiments, technological progress has allowed
mutual synchronization in many systems compatible with
lithographic fabrications, such as Josephson junctions [2],
nanomechanical and optomechanical structures [3–5], and
spin-torque nano-oscillators [6,7,16–19]. The strength of
synchronization in all these systems is set by the coupling
parameters in Eq. (1). However, the coupling strengthΩji and
the intrinsic phase shift βi are rarely quantified in experiments
despite their importance for achieving large phase-locking
ranges [20,21]. Being able to quantify these parameters is also
crucial for synchronization-based information processing
such as coupled-oscillator associative memories [22,23].
Among different oscillator systems, spin-torque nano-

oscillators [24] serve as outstanding candidates for imple-
menting coupled oscillator arrays, due to their submicron
dimensions, nonlinear behaviors with large frequency

tunability, simple signal extractions from magneto-
resistance, and ease of being coupled and synchronized
[6,7,16–19,25–30]. Of special engineering interests are
spin-torque vortex oscillators [31,32], which allow oper-
ation without biasing field and different tuning properties
[33–35] linked to the bistable orientation of the vortex core
magnetization (polarity) [36]. The synchronization of two
adjacent vortex oscillators through their dipolar field
[37–39] has been demonstrated [18,40–42], as has the control
of the phase-locking bandwidth by their relative vortex
polarities [18,43]. Moreover, vortex oscillators are a model
system for coupled oscillators in general, because their
dynamics is well understood [44] and their phase coupling
can be described by Kuramoto-like equations [18,45].
In this Letter we employ a third reference “oscillator,”

namely, an external microwave field with tunable frequency
and power, as a dynamical probe to measure the dipolar
coupling between two spin-torque vortex oscillators. When
the microwave field phase locks one oscillator, an obvious
frequency pulling is measured on the second oscillator. By
including the coupling to external source in Eq. (1), we show
analytically that this frequency pulling is due to in-phase
actions of source-oscillator and interoscillator couplings
within the phase-locking bandwidths, beyond which it
disappears. The model is tested upon varying the source-
oscillator coupling by changing the microwave power, and
the interoscillator coupling by changing the vortex polarity
states. It allows us to extract dipolar coupling strengths and
phase shifts, with the former compatible with analytical
calculations [43]. Our results provide a new way to directly
reveal and characterize the mutual coupling between oscil-
lators through their attraction to a third reference oscillator,
which can be applied to various oscillator systems.
Our sample consists of two cylindrical spin-torque nano-

oscillatorswith identical nominal diameters of2R ¼ 400 nm
and an edge-to-edge separation of L ¼ 200 nm, as shown in
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Fig. 1(a). Each oscillator has a spin-valve layer structure of
Pyð15 nmÞjCuð10 nmÞjPyð4 nmÞ (Py¼Ni80Fe20). During
operation a strong dc current is injected through the two
oscillators in parallel, which favors a vortex state in all Py
layers [46]. It flows from Py(4 nm) to Py(15 nm), so that in
each oscillator the spin-transfer torque destabilizes the mode
dominated by the thick layer and overdamps the thin-layer
dynamics [33,34,47]. The current is set to 95 mA, i.e., 1.5
times the critical current to drive the auto-oscillations of the
thick Py layers. The dynamics excited in each oscillator
corresponds to the rotation of the vortex core around its
equilibrium position, the so-called gyrotropic mode [48].
Because of the small lateral separation, the two oscillators are
dynamically coupled through their dipolar field [18,40]. We
note that, owing to their much smaller volumes and limited
dynamics, the contribution of the thin-layer vortices to the

oscillator-oscillator coupling is weak. Moreover, their vortex
core polarity is not purposely controlled in this study. In the
following, wewill thus refer exclusively to the vortices in the
thick Py layers of each oscillator, labeled 1 and 2. To provide
an external rf field, an electrically isolated antenna is patterned
on top of the sample [49], creating an in-plane hrf linearly
polarized along the directionmade by the two oscillators [see
Fig. 1(a)]. Furthermore, a biasing magnetic field is applied
perpendicular to the sample plane in order to vary the
gyrotropic frequencies [36,44].
First, we examine the microwave signals associated with

auto-oscillations in each oscillator. Figures 1(b)–1(e) show
the color maps of the power spectral density as a function of
perpendicular field H. In each graph, two branches corre-
sponding to the gyrotropic modes of the thick-layer vortex
in each oscillator are observed. The four combined vortex
polarity states for oscillators 1 and 2 can be obtained after
applying well-chosen perpendicular switching fields [33].
The polarity state of oscillator i is defined as hi↑i (hi↓i) for
vortex core magnetization parallel (antiparallel) to the
positive biasing field direction, which corresponds to a
positive (negative) frequency-field slope [36,44].
Next we demonstrate the existence of dipolar coupling

by the observation of mutual synchronization. Figures 1(f)
and 1(g) compare the enlarged power spectra of the h1↑2↑i
and h1↓2↑i states for 0 ≤ μ0H ≤ 50 mT, as labeled by the
red boxes in Figs. 1(b) and 1(e), respectively. By switching
the polarity of vortex oscillator 1, a clear gap of the auto-
oscillation branch for oscillator 2 is found between μ0H ¼
17.5 and 26 mT in the h1↓2↑i state, while for the h1↑2↑i
state the branch is continuous. This gap, accompanied by a
bright lower-frequency branch, is associated to the syn-
chronization of the two oscillators. From the right edge of
the synchronization bandwidth, we deduce that the maxi-
mal frequency mismatch for mutual synchronization is
28 MHz. The frequency mismatch corresponding to the
unlocking of the two oscillators at the left edge is smaller.
We attribute this to the fact that the amplitude and linewidth
of oscillators can vary with the perpendicular field [34],
which will change the effective dipolar coupling. The
results above show that the dipolar interaction is strong
enough to synchronize the two oscillators. Still, a quanti-
tative evaluation of its strength Ωji and phase shift βi is
lacking at this point of the analysis.
In order to directly reveal and quantify the dipolar

coupling, we fix both the biasing current and magnetic field
and apply a weak microwave field, which couples to both
oscillators. The two oscillators are set to an unsynchronized
state at μ0H¼31.9mT, shown in Fig. 2(a). Figure 2(b)
shows the evolution of auto-oscillation peaks of the two
oscillators as a function of the external microwave field
frequency ωe. When ωe crosses the peak of oscillator 1
around 460 MHz, the disappearance of the peak reflects the
phase locking to the external rf source [25,26,29]. In
addition, we also detect a significant frequency pulling on

FIG. 1. (a) Schematics of the sample and electrical circuit.
(b)–(g) Power spectral density maps of auto-oscillation modes in
log scale. Four different polarity states of the two thick Py vortex
layers are shown: (b) h1↑2↑i, (c) h1↓2↓i, (d) h1↑2↓i, and (e)
h1↓2↑i. (f),(g) Enlarged power spectral density data of h1↑2↑i
and h1↓2↑i for the red box regions of (b) and (e), respectively.
Mutual synchronization is observed between μ0H ¼ 17.5 and
26.0 mT in the h1↓2↑i state.
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oscillator 2. This is a striking observation, because the
frequency mismatch between oscillators, ðω2 − ω1Þ=2π ¼
35 MHz, is 5 times larger than the phase-locking band-
widths, around 7 MHz, of the two oscillators to the external
source. The remote frequency pulling is a strong indication
of coupling between the two oscillators as it is bound to the
phase-locking bandwidth. It is important to note that no
obvious frequency shift is observed when ωe lies between
the two auto-oscillation peaks. Reciprocally, a similar effect
is also observed on oscillator 1 when oscillator 2 is phase
locked to the microwave field around 495 MHz.
To understand these phenomena, we develop a simplified

analytical formalism based on general oscillator equations
[15]. For two dipolarly coupled vortex oscillators experi-
encing a linearly polarized microwave field, the phase
equations can be formulated [46] from the Thiele equation
which describes the vortex core dynamics in a magnetic dot
[50–52], as

−
dθi
dt

þ ωe − ωig þ Ωji cosðθi þ γnli − θjÞ
− Δie sinðθi þ γnli þ γrfi Þ ¼ 0; ð2Þ

where θi ¼ ωet − piφi is the phase difference between the
microwave field and the position of the vortex core, pi ¼ �1
is the vortex polarity, ωig is the free-running frequency of
oscillator i,Ωji ¼ ΩðXj=XiÞ is the dipolar coupling strength

Ω normalized by the ratio of vortex gyration amplitudes
Xj=Xi, and Δie is the coupling strength to the external
microwave source. The index is defined as ði; jÞ ¼ ð1; 2Þ
or (2,1). In Eq. (2) two additional phases are present: γnli is the
intrinsic phase shift introduced by the nonlinearity of the
oscillators [15,20] and γrfi is the microwave coupling phase,
which is determined by the geometric alignment of the
microwave field to each oscillator [see Fig. 1(a)]. We high-
light that Eq. (2) describes the general behaviors of self-
sustained oscillators: for Δie ¼ 0, it is reduced to Kuramoto
equations Eq. (1) with βi ¼ π=2 − γnli , where the π=2 phase
originates from the conservative nature of dipolar coupling
[15]; forΩ ¼ 0, it is reduced to theAdler equation responsible
for one oscillator phase locking to an external source [53].
In the general case, the phase dynamics of oscillator 2

evolves in a complex way due to the uncorrelated forces
exerted by the microwave field and oscillator 1. However,
when oscillator 1 phase locks to the microwave field, the
situation simplifies: its relative phase with respect to the
microwave field, θ1, becomes a constant. In that case, we
can rewrite the phase dynamics of oscillator 2 in Eq. (2) as
driven solely by the action of the microwave field, but with
a modified effective coupling strength Δ�

2e that takes into
account both the microwave coupling and the dipolar
attraction to oscillator 1,

Δ�
2e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

2e þ Ω2
12 − 2Δ2eΩ12 cosΦ2

q
: ð3Þ

From Eq. (3), we find Δ�
2e is the vector sum of the effective

dipolar coupling strength Ω12 and the microwave coupling
strength Δ2e with a phase difference Φ2 ¼ θ1 þ γrf2 þ π=2
[Fig. 2(c)]. The frequency of oscillator 2 is then determined
by the frequency of the microwave field and the strength of
this new effective coupling Δ2e through

ω2 ¼ ωe �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðωe − ω2gÞ2 − ðΔ�

2eÞ2
q

; ð4Þ

where � depends on the sign of ωe − ω2g. Equation (4)
indicates that when oscillator 1 is phase locked to the
microwave field, it can help pull the frequency of oscillator
2 towards the frequency of the source, as observed in
Fig. 2(b).
Full analytical solutions to our model can be obtained in

the limit of weak microwave coupling [46]. In Fig. 3 we use
them to extract the coupling parameters under different
conditions. First, the microwave power is varied, which sets
the phase-locking bandwidths and associated remote fre-
quency pullings. Second, both antiparallel (AP) [Figs. 3(a)
and 3(b)] and parallel (P) [Figs. 3(c) and 3(d)] vortex polarity
alignments are examined, for which the strength of dipolar
coupling is expected to change by a factor close to 3 [18,43].
The data are fitted to Eq. (4) with Ω and γnli as the fit
parameters. Positive and negative signs ofΩ are expected for
parallel and antiparallel polarity alignments, respectively

FIG. 2. (a) Location of spectra at the h1↓2↑i state for the
microwave study. (b) Auto-oscillation spectra as a function of
microwave field frequency for μ0H ¼ 31.9 mT, indicated in (a).
Signal from the source appears as the oblique narrow line. The
microwave power is −23 dBm, corresponding to μ0hrf ¼ 0.08mT.
White arrows show the phase-locking bandwidths. Black dashed
curves are the fits to Eq. (4). (c) Vector diagram of Ω12 and Δ2e
when oscillator 1 is phase locked to the microwave field.
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[43], which is taken into account. Details about the fitting
procedure can be found in the Supplemental Material [46].
The fitting curves are shown in Fig. 3 and Fig. 2(b).
Table I lists the fitting results along with the microwave

field amplitude hrf . As expected, the mean of phase-locking
strengths ðΔ1e þ Δ2eÞ=2 is proportional to the microwave
field. For the antiparallel polarity alignment, the extracted
dipolar couplingΩ slightly increases with hrf . One reason is
that the vortex gyration amplitude Xi might be increased as
oscillator i is phase-locked to the microwave field, resulting
in an enhancement ofΩij on oscillator j. Another possibility
is the incomplete phase locking at small hrf [observed in
Fig. 3(a) for oscillator 2] due to thermal fluctuations, which
are likely to reduce the effective coupling [26,29]. Owing to

these two counteracting effects, we take the average of the
three experiments, ΩAP=2π ¼ −8.0 MHz, as the extracted
value of Ω. For the parallel polarity state, we take the value
extracted from Fig. 3(c),ΩP=2π ¼ 3.6 MHz, as the strength
of the dipolar coupling. In fact, the limit of weak microwave
coupling does not hold in Fig. 3(d) because of the large
microwave power in comparison to the small frequency
mismatch between oscillators; this results in a more complex
dynamics. It is interesting to note that the twovalues compare
favorably with the ones obtained from the macrodipole
approximation taking into account solely the thick
Py layers [40,43]. In that case, ΩAPðPÞ=2π ¼ −3ðþ1Þ×
ξ2γμ0MsR2h=32πd3 ¼ −6.9ð2.3Þ MHz, where ξ ¼ 2=3
from the two-vortex ansatz [48], γ=2π ¼ 29.7 GHz=T is
the gyromagnetic ratio, μ0Ms ¼ 0.96 T is the saturation
magnetization of the Py vortex layers [49], h is their
thickness, and d ¼ 2Rþ L is the center-to-center distance
between oscillators. We also point out that the ratioΩAP=ΩP
in our experiment agrees with the ratio of critical frequency
mismatch in our prior work, ΔfAP=ΔfP ¼ 2.4 [18], and
depends on the exact geometry of the oscillator pair [43].
The phase shift γnli is linked to the position of the largest

remote frequency pulling in Fig. 3. In the antiparallel
polarity alignment, the values of γnli are reproducible at
various microwave fields but differ from those in the
parallel alignment, indicating large variations of parameters
in magnetic dynamics upon polarity change. From the
model, tan γnli is the reduced nonlinear coefficient νi of
oscillator i [15]. However, we note that the fitting results
with negative values of γnli point towards either an addi-
tional extrinsic phase due to, e.g., parasitic rf couplings
between the antenna and sample circuits, or more complex
dynamics than assumed in the simple analytical model.
One interesting finding is that the extracted Ω in the

antiparallel polarity alignment is much smaller than the
phase-locking frequency mismatch of 28 MHz found in
Fig. 1(g). In our experiments the amplitude ratio X2=X1 is
close to 1 [46]. In the phase-locking solution derived by
Slavin and Tiberkevich [54], the maximal frequency mis-
match for mutual synchronization is then Ωðν1 þ ν2Þ. Thus
we confirm the role of nonlinearities, with ν1 þ ν2 around
3.5, in the large phase-locking frequency mismatch. The
fact that the synchronized mode is closer to the peak branch
of oscillator 1 likely indicates that ν2 is greater than ν1,
making it easier for oscillator 2 to adapt its frequency to
oscillator 1.
Our results show that two dipolarly coupled spin-torque

vortex oscillators follow ideal oscillator systems described
by Eq. (2), a preassumption for studies based on the
Kuramoto model [45]. We confirm that the dipolar coupling
strength can be tuned by a factor greater than 2 with
bistable polarity states [18,43], providing a unique freedom
to manipulate the collective dynamics. For instance, a new
propagating wave mode has been predicted in oscillator
arrays with both attracting and repulsive interactions [55],

FIG. 3. Probing dipolar coupling in various conditions. (a),(b)
The h1↓2↑i state for μ0H ¼ 31.9 mT, with microwave powers of
(a) −28 dBm and (b) −18 dBm. (c),(d) The h1↓2↓i state for
μ0H ¼ −61.6 mT with microwave power of (c) −28 dBm and
(d) −23 dBm. White arrows show the phase-locking bandwidths.
Black dashed curves are the fits to Eq. (4). The fit parameters are
listed in Table I.

TABLE I. Fit parameters of Figs. 2(b) and 3. The values of hrf
are calculated from the antenna geometry. The signs of Ω are
fixed to the predictions in Ref. [43].

Antiparallel Parallel

μ0hrf (mT) 0.05 0.08 0.14 0.05 0.08
Δ1eþΔ2e

4π (MHz) 1.8 3.2 5.5 1.8 3.5

Ω=2π (MHz) −6.7 −7.9 −9.3 3.6 4.2
γnl1 (rad) −2.7 −2.8 −2.0 2.6 2.1
γnl2 (rad) 1.1 1.1 0.7 −2.1 −1.4

PRL 118, 247202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
16 JUNE 2017

247202-4



which can be realized with the two different polarity
alignments. In addition, we learn about the nonlinearities
in spin-torque nano-oscillators. Finite phase shifts γnli are
measured, as predicted in theory [15,56] and as identified in
similar systems [19,30]. This indicates that practical
oscillator networks fall into the Sakaguchi-Kuramoto
regime [Eq. (1) with nonzero βi)] in which synchronization
can be destroyed by the phase detunings at medium Ω [21].
In summary, we have developed a novel approach to

study coupled oscillators with an external ac drive. By
controlling the relative phases between the ac source and
one phase-locked oscillator, we acquire not only the
strength but also the phase information of the interoscillator
coupling. This probing technique is not restricted to spin-
torque oscillators and microwave field, but is applicable to
all coupled oscillator systems and ac drives. By extending
our understanding of them, this technique is also useful for
further manipulation and investigation of collective dynam-
ics in large arrays of auto-oscillators.
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